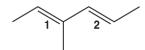
Alkenes (MCQ)

1.	What is the best description for the bonding between the carbon atoms in an ethene molecu	e?
	A One σ -bond and one π -bond	
	B One π-bond	
	C Two σ-bonds	
	D Two π-bonds	
	Your answer	[1]
2.	Which statement about an electrophile is correct?	
	A It is an electron pair acceptor.	
	B It is a proton donor.	
	C It is a negative ion.	
	D It is a species with an unpaired electron.	
	Your answer	[1]
3.	A section of a polymer is shown below.	
	CN CN CN	
	Which monomer could form this polymer?	
	A CH₃CH(OH)CN	
	B HOCH ₂ CH ₂ CN C H ₂ C=CHCN	
	D NCCH=CHCN	
	D NOOH-OHOW	
	Your answer	[1]


4. A student reacts pent-2-ene with bromine in the laboratory.

Which compound is formed?

- A 1,1-dibromopentane
- **B** 1,2-dibromopentane
- C 2,2-dibromopentane
- **D** 2,3-dibromopentane

Your answer	[1
Your answer	[1

5. The molecule below has two double bonds, labelled 1 and 2.

The arrangement around each double bond can be identified as *E* or *Z*.

Which row in the table is correct for double bond 1 and double bond 2?

	Double bond 1	Double bond 2
Α	E	Z
В	Z	E
С	E	E
D	Z	Z

Your answer	[1]
-------------	-----

- **6.** Which alcohol reacts with an acid catalyst to form *E* and *Z* stereoisomers?
 - A pentan-3-ol
 - B pentan-1-ol
 - C 2-methylbutan-2-ol
 - D 2,2-dimethylpropan-1-ol

7. The displayed formula for a hydrocarbon is shown below.

How many σ and π bonds are present in a molecule of this hydrocarbon?

	σ bonds	π bonds
Α	2	4
В	10	2
С	10	4
D	12	2

Your	answer	

[1]

8. A reaction sequence is shown below:

Step 1 $CH_3CH=CHCH_3 + HBr$ \rightarrow $CH_3CH_2CHBrCH_3$

Step 2 $CH_3CH_2CHBrCH_3 + NaOH$ \rightarrow $CH_3CH_2CH(OH)CH_3 + NaBr$

Which type of reaction mechanism is involved in each step?

	Step 1	Step 2
Α	electrophilic addition	electrophilic substitution
В	electrophilic addition	nucleophilic substitution
С	nucleophilic addition	electrophilic substitution
D	nucleophilic addition	nucleophilic substitution

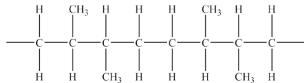
Your answer	

[1]

9. Which compound has non-polar molecules?

A *E*-1,2-dichlorobut-2-ene

B *E*-2,3-dichlorobut-2-ene


C Z-2,3-dichlorobut-2-ene

D Z-1,4-dichlorobut-2-ene

Your answer

[1]

10. A section of a polymer chain is shown below.

Identify the monomer that would give rise to this section of addition polymer.

- A. E-But-2-ene
- B. Z-But-2-ene
- C. Methylpropene
- D. Propene

Your answer

[1]

11. Three of the following displayed formulae represent the same isomer of C₃H₄Cl₂ but one structure represents a different isomer, **X**.

Which displayed formula represents X?

A

В

 \mathbf{C}

D

$$C = C$$
 $C = C$

Your answer

[1]

END OF QUESTION PAPER

Mark scheme – Alkenes (MCQ)

Q	Question		Answer/Indicative content	Marks	Guidance
1			A	1 (AO1.1)	Examiner's Comments Candidates answered this question well with over two-thirds choosing the correct option A. Option D was the most common incorrect response suggesting that candidates are uncertain about the nature of a C=C double bond.
			Total	1	
2			A	1 (AO1.1)	
			Total	1	
3			c	1 (AO1.2)	Examiner's Comments This part discriminated well. Although most candidates did select C as the correct structure, many were diverted into selecting option D, the other alternative containing a double C=C bond. In identifying a monomer for an addition polymer, candidates are advised to identify the repeat unit and then to replace the single C–C bond with a double bond to give the monomer.
			Total	1	
4			D	1	Examiner's Comments Most candidates chose the correct option of D but a sizeable number chose B and C, the other options containing a '2' in their names. The best strategy here is to draw out the carbon skeleton of pent-2-ene from which it is clear that bromine atoms must be added at carbon positions 2 and 3.
			Total	1	
5			С	1	Examiner's Comments This was a difficult question but higher ability candidates selected the correct option of C. The main discriminator was B, which identifies the 1 double bond as Z. CIP analysis is required to show that the double bond is E. This is a good 'hard' example for illustrating E/Z isomerism.

		Total	1	
6		A	1	Examiner's Comments Candidates found this question challenging, with only the more able candidates obtaining the correct alcohol. Answer option C was a common incorrect answer.
		Total	1	
7		D	1	Examiner's Comments B was a common incorrect answer with the sigma bond not counted as part of a double bond.
		Total	1	
8		В	1	Examiner's Comments Generally scored well.
		Total	1	
9		В	1	Examiner's Comments Candidates struggled with this very different polarity question. The majority of candidates are clearly used to applying symmetry to much simpler molecules.
		Total	1	
10		D	1	
		Total	1	
11		D	1	
		Total	1	